Chapter 4

Linear Methods for Regression

In these notes we introduce a couple of linear methods similar to regression but
that are designed to improve prediction not for interpreting parameters. We will
introduce the singular value decomposition and principal component analysis.
Both these concept will be useful throughout the class.

4.1 Linear Predictors

Before computers became fast, linear regression was almost the only way of at-
tacking certain prediction problems. To see why, consider a model such as this

Y =By + fie”¥ + e, (4.1)
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finding thes that minimize, for example, least squares is not straight forward. A
grid search would require many computations because we are minimizing over a
3-dimensional space.

Technical note: For minimizing least squares in (4.1) the Newton-Raphson algo-
rithm would work rather well. But we still don’t get an answer in closed form.

As mentioned, the least square solution to the linear regression model:
p
Yzﬁo—FZXjﬂj—FC
j=1

has a closed forntinear solution In Linear Algebra notation we write3 =
(X'X)"' X'y, with B8 = (5o, 51, 32)'. The important point here is that for any
set of predictors: the prediction can be written as a linear combination of the
observed datd” = Y wi(x)y;. Thew;(x) are determined by th& ;s and do
not depend of.

What is the predictiony” for z ?

When we say linear regression we do not necessarily mean that we motlehthe
an actual line. All we mean is that the expected valu¥ o a linear combination
of predictors. For example, X is a fixed quantity (i.e. we are not estimating it)
then this is a linear model:

Y = By + B sin(AX) + g cos(AX) + e.

To see this simply defing; = sin(AX) and.X, = cos(AX).
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For the model (4.1) defined above, we can not do the same beKauseegX
contains a parameter.

If the linear regression model holds then the least squares solution has various nice
properties. For example, if the are normally distributed thed is the maximum
likelihood estimate and is normally distributed as well. Estimating the variance
components is simpléX'X)~!o? with o2 the error variance, vé&). o2 is usually

well estimated using the residual sum of squares.

If the es are independent and identically distributed (1ID) théris the linear
unbiased estimate with the smallest variance. This is called the Gauss-Markov
theorem.

Technical note: Linear regression also has a nice geometrical interpretation. The
prediction is the orthogonal projection of the vector defined by the data to the
hyper-planedefined by the regression model. We also see that the least squares
estimates can be obtained by using the-Graham Schmidt algorithm which orthogo-
nalized the covariates and then uses simple projections. This algorithm also helps
us understand the QR decomposition. For more see the book for more details.
More latter.

4.1.1 Testing Hypotheses

Review the t-test, i.e. estimate divided by standard estimate idea... and what
happens when we have to estimate the standard error.
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The fact that we can get variance estimates from regression, permits us to test for
simple hypotheses. For example

Bi/se(B;) ~ tn—p1

under the assumptions of normality forWhene is not normal but 11D, then the
above is asymptotically normal.

If we want to test significance of various coefficients. In this case we can general-

ize to the F-test.
(RSSy — RSS1)/(p1 — po)

RSSl/(N — P1— 1)
Under normality assumptions this statistic (the F-statistic) follows a,,, N — po — p1
distribution.

Similarly we can form confidence intervals (or balls). For the case of multiple
coefficients we can use the fact that

(8 —B)X'X(B8-B)

5—2

Follow ax?, distribution

4.2 Graham Schmidt

One can show that the regression coefficient for jtiepredictor is the simple
regression coefficient af on this predictor adjusted for all others (obtained using
Graham-Schmidt).
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For the simple regression problem (with not intercept)

Y =X0G+¢

the least square estimate is
B _ Z:‘L:1 TiYi
D1 T

Can you see for the constant model?

Mathematicians write the above solution as

s <X,y >

b= <X, X >
We will call this operation regressingonx (its the projection of onto the space
spanned by)

The residual can then be written as

r=y-—fgx

What was the solution fab, to Y = 5y + 5, X?

We can rewrite the result as
B _ <x- zl,y >
T < x—7l,x—z1 >

Notice that we the Graham-Schmidt permits us to estimatg tirea multivariate
regression problem by first regressirgon x;, then the residuals from that on
bxs, Up tox,. Then regressing on the final residuals.
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Notice that if thexs are correlated then each predictor affects the coefficient of
the others.

The interpretation is that the coefficient of a preditﬁpis the regression gf on
x; afterx; has beadjustedior all other predictors.

4.3 Subset Selection and Coefficient Shrinkage

When we have many predictors and the linear model seems to fit the data well,
there are still reasons why we are not satisfied: Prediction accuracy and interpre-
tation.

Two ways that we can achieve this is by

1. Using a subset of the predictors (notice more predictors always means less
bias) and

2. Shrinking some of the coefficients toward zero

Ridge regression permits us to do 2.
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4.3.1 Subset Selection

Although the least squares estimate is the linear unbiased estimate with minimum
variance, it is possible that a biased estimate will give us a better mean squared
error.

Consider a case where the true model is
Y =060+ 51Xy + 52Xy + €

and thatX; and X, are almost perfectly correlated (statisticians 3gyand X,
are co-linear). What happens if we leak¥ie out?

Then the model is very well approximated by
Y = G+ (b1 + B2) X1 + ¢

and we may get a good estimateYofestimating 2 parameters instead of 3. Our
estimate will be a bit biased but we may lower our variance considerably creating
an estimate with smaller EPE than the least squares estimate.

We wont be able to interpret the estimated parameter, but out prediction may be
good.

In Figure 4.3.1 we demonstrate results from fitting various subset models to a
simulated example where the true model is a linear model with 10 predictors and
we observe 15 outcomes.

In subset selection regression we select a number of covariates to include in the
model. Then we look at all possible combinations of covariates and pick the
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one with the smallest RSS. In Figure 4.3.1 we show for each value of covariates
included a point representing the RSS for a particular model. We do this for a
training and test set.

As expected, for the training set the RSS becomes smaller as we include more
predictors. However, for the training data using a biased model produces better
results.

To see this in real data let us consider the prostate cancer data set presented in the
HTF book. (The data set is available from the lasso2 R package)

These data come from a study that examined the correlation between the level of
prostate specific antigen and a number of clinical measures in men who were about
to receive a radical prostatectomy. It is data frame with 97 rows and 9 columns.

The predictors available in the data set are: Icavol, log(cancer volume), lweight,
log(prostate weight)age, agelbph, log(benign prostatic hyperplasia amount) svi,
seminal vesicle invasionlcp, log(capsular penetration)gleason, Gleason scorepgg45,
and percentage Gleason scores 4 or 5lpsa.

The data is described in more detail here:

Stamey, T.A., Kabalin, J.N., McNeal, J.E., Johnstone, I.M., Freiha, F., Redwine,
E.A. and Yang, N. (1989) Prostate specific antigen in the diagnosis and treatment
of adenocarcinoma of the prostate: Il. radical prostatectomy treated pali@mnts,

nal of Urology141(5), 1076—1083.

Notice that smaller models tend to do better.
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Figure 4.1: Prediction error (RSS) for all possible subset models for training and
test sets. The solid lines denote the minimums.

A little bias can be good
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Figure 4.2: Prediction error (RSS) for all possible subset models for training and
test sets for prostate cancer data. The solid lines denote the minimums.
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For a given number of predictors, how do we find the model that gives the smallest
RSS? There are algorithms that do this, but you do not really want to use this.
Better things are about to be described.

How do we choose the number of covariates to include? Thats a bit harder.

4.3.2 Shrinkage methods

By only considering some of the covariates we were able to improve our predic-
tion error. However, the choice of one covariate over an another can sometimes
be a very arbitrary decision as including either works well but both together do no
work as well (this happens often with correlated predictors).

We can think of the subset selection procedure as onestirtatkssome of the
coefficient to 0. But what if we do this in a smoother way? Instead of either
keeping it (multiply by 1) or not (multiply by 0), let's permit smoother shrinkage
(multiply by a number between 0 and 1).
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4.3.3 Ridge Regression

For ridge regression instead of minimizing least squarepemalizefor having to
many (5 that are big by considering the following minimization criteria:
N

Z(yz — Bo — injﬁj)Q + )\Zﬁf
J=1 j=1

i=1

We will denote the parameter vector that minimizes 898 Here ) is a
penalty sometimes called titemplexity parameter

One can demonstrate mathematically that minimizing the above expression is
equivalent to minimizing the regular RSS

N P p

Z(yl — /60 — injﬁj)Q SUbjeCt toz BJQ <s

i=1 j=1 j=1

wheres is inversely proportional to lambda.

Notice that when\ is 0, we get the least squares estimate. Howeveh @sts
bigger, over fitting gets more expensive as larger valugspEnalize the criterion
more. The smallest penalty occurs when allflseare 0. This gives us an estimate
with small variance but likely large bias.

Although this problems looks complicated it turns out the resulting predictor is a
linear estimate!

One can show that the solution is (in linear algebra notation)
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Figure 4.3: Prediction error (RSS) for ridge regression with varying penalty pa-
rameters
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In Figure 4.3.3 we see the RSS in a test and training set for the prostate cancer
data for various values of.

As expected the RSS in the training set is best when0 (no shrinkage, nothing
stopping us from over-fitting). However, for the training set the smallest RSS
occurs for\ =~ 10

The least squares estimates are given below. Notice age has a significant protective
effect. This is at odds with out intuition.

Est SEt Pr(>|t])
(Intercept) -0.10 1.42 0.9434

Icavol 0.59 0.10 9.58e-07 ***
lweight 0.73 0.28 0.0160 *
age -0.03 0.01 0.0257 *
lbph 0.18 0.07 0.0244 *
svi 050 0.32 0.1329
lcp -0.16  0.10 0.1299
gleason 0.07 0.17 0.6983
pgg45 0.01 0.004 0.1199

Ridge regression shrinks the regression coefficients toward 0. Notice what hap-
pens to these coefficients agrows. Notice in particular what happens to age.
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Figure 4.4: Estimated coefficients using ridge regression with various penalty pa-
rameters.
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4.3.4 SVD and PCA

The singular value decomposition (SVD) of the centered input mXirgives us
insight into the nature of ridge regression.

This decomposition is extremely useful in many statistical analysis methods. We
will see it again later.

The SVD of anN x p matrix X is
X =UDV’

with U andV N x p andp x p orthogonal matrices arid ap x p diagonal matrix
with entriesd; > d, > ... d, > 0 called the singular values &.

Technical NoteU is an orthogonal basis for the space defined by the columns of
X andV is an orthogonal basis for the space defined by the rows. of

We can show that the least squares predictor for linear regression is
y — X/éls — X(x/x)—lx/y
= UU'y

Technical NoteU’y are the coordinates gf with respect to the orthogonal basis
U

The ridge solution can be expressed as

XBMdge X (X'X + D)Xy
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= UD(D2 + M)~ 'DUy

= Zu3d2+)\ iy

Notice that becausg > 0, % < 1. Like linear regression, ridge regression
computes the coordinates 9fW|th respect to the orthogonal badis It then
shrinks these coordinates by the factgj%'jr This means that a greater amount

of shrinkage occurs whekis big and for smalled;s.

What does having a small represent? A way to understand this is by looking at
theprincipal componentsf the variables irX.

If the X are centered, the sample covariance matrix is giveR¥/N andX'X/
can be written as
X'X = VD?*V.,

Technical note: this is the eigen decompositiorXoX.
Thew;s are called the eigen values and also the principal components directions

of X. Figure 4.3.4 shows a scatterplotX¥fand the directions as red (solid) and
blue (dashed) lines.

The first principal componert; = Xv; has the property that it has the largest
sample covariance among all normalized (coefficients squared add up to 1) linear
combinations ofX. The sample variance i§/N.

The derived variable; = Xv; = u;d; is called the first principal component.
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Figure 4.5: Plot of two predictorsX, versusX;, and the principal component
directions
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Similarly z; = Xv, is called thejth principal componentX'V = UD is a matrix
with principal components in the columns. Figure 4.3.4 shows these.

We now see that ridge regression shrinks coefficients related to principal compo-
nents with small variance. This makes sense because we have less information
about his.

In the case of Figure 4.3.4, we can think of it as weight and height, we are saying
predict with the sum and ignore the difference. In this case, the sum give much
more info than the difference.

Principal Component Regression

Principal component regression disregard the need to interpret coefficients as ef-
fects sizes of the covariates. Instead we include the linear combinations of covari-
ates that contain the most information.

We regress the outcoméon a few principal components, . . ., z,,. Notice that

if M = p we are back to simply doing regression on all the covariates. However,
for principal components with very small eigenvalugst makes little sense to
include them in the regression because it means that the subjects differ very little
in z; thus we have little information to learn about the effect of this component.

Because the principal components are orthogonal, the prediction is simply
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second principle component
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Figure 4.6: Plot of two principal components Xt
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M
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Partial least squares is a method, similar to principal component regression, that
chooses the components to include based on the correlatiorywilthis makes

the method non-linear and thus computationally less attractive. The fact that in

practice the method ends up being almost identical to principal component re-

gression makes it even less attractive.

4.3.5 The Lasso

The lasso’s definition is similar to that of ridge regression. However, we obtain
very different results.

p p
> (Wi — 08— Y wi3)* subjectto  |5;| < s
=1 =1

=1

The lasso does not provide a linear algorithm
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In practice one sees that the lasso makes more coefficients 0. This is sometimes
nicer for interpret-ability. See the book and papers on lasso for more information.

Other methods we will not discuss here are principal component regression and
partial least squares regression.



