
Chapter 5

Linear Methods for Prediction

Today we describe three specific algorithms useful for classification problems:
linear regression, linear discriminant analysis, and logistic regression.

5.1 Introduction

We now revisit the classification problem and focus on linear methods.

Since our prediction̂G(x) will always take values in the discrete setG we can
always divide the input space into a collection of regions taking the same predicted
values.
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The question is: What is the best sub-division of this space?

We saw previously that the boundaries can be smooth or rough depending on the
prediction function.

For an important class of procedures thesedecision boundariesare linear, this is
what we will mean by linear methods for classification. We will see that these can
be quite flexible (much more than linear regression).

Suppose we haveK classes labeled1, . . . , K. We can define a 0-1 indicator for
each classk and for each of these perform regression. We would end-up with a
regression function̂fk(x) = β̂0k + β̂′1kx for each classk.

The decision boundary between classk andl is simplyf̂k(x) = f̂l(x) which is the
set{x : (β̂0k − β̂0l) + (β̂1k − β̂1l)

′x = 0} which is on a plane.

Since the same is true for any pair of classes the division of the space of inputs are
piecewise planes.

This regression approach is a member of a set of methods that modeldiscriminant
function δk(x) for each class, and then classifyX to the class with the largest
value for its discriminant function.

Methods that model the posterior probabilityPr(G = k|X = x) are also in this
class. If this is a linear function ofx then we say its linear. Furthermore if its a
monotone transformation of a linear functionx we will sometimes say its linear.
An example islogistic regression. More on that later.
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Both decision boundaries shown in Figure 5.1 are linear:

Figure 5.1: Two linear decision boundaries. One obtained with straight regression,
the other using the quadratic terms.

5.2 Linear Regression of an Indicator Matrix

Each response is coded as a vector of 0-1 entries. IfG hasK classes thenYk, k =
1, . . . , K with Yk = 1, if G = k and0 otherwise.

These are collected in a vectorY = (Y1, . . . , YK) and theN training vectors are
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collected into aN ×K matrix we denote withY.

For example, if we haveK = 5 classes

1
2
3
4
5

→

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

On the left is the original data and the left the coded data.

To fit regression to each class simultaneously we can simply use the same matrix
multiplication trick.

Ŷ = X(X′X)−1X′Y

Notice the matrix
B̂ = (X′X)−1X′Y

has the coefficients for each regression in the columns. So for any pointx we can
get the prediction by

• compute the fitted output̂f(x) = [(1, x)B̂]′, aK vector

• identify the largest component and classify accordingly:

Ĝ(x) = arg max
k∈G

f̂k(x)
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What is the rational for this approach?

A formal justification is that we are trying to estimate E(Yk|X = x) = Pr(G =
k|X = x). The real issue is: How good is the linear approximation here? Alter-
natively, are thêfk(x) good estimates ofPr(G = k|X = x).

We know they are not great because we knowf̂k(x) can be larger than 1 and
smaller than 0. However, as we have discussed this does not necessarily matter if
we get good predictions.

A more conventional way of fitting this model is by definingtk as the vector with
a 1 in thek entry andyi = tk if gi = k. Then the above approach is equivalent to
minimizing

min
B

N∑
i=1

||yi − {(1, xi)B}′||2.

A new observation is classified by computingf̂(x) and choosing the closest target

arg min
k
||f̂(x)− tk||2

Because of the rigid nature of regression, a problem arises for linear regression
whenK ≥ 3. Figure 5.2 shows an extreme situation. Notice that the boundaries
can easily be formed by eye to perfectly discriminate the three classes. However,
the regression discriminatory does not do well.

Why does linear regression miss the classification in Figure 5.2? To see what is
going on the ideas we learned in the last chapter are useful. Notice that the best
direction to separate these data is a line going through the centroids of the data.
Notice there is no information in the projection orthogonal to this one.
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Figure 5.2: Two linear decision boundaries. One obtained with straight regression,
the other using the quadratic terms.



5.2. LINEAR REGRESSION OF AN INDICATOR MATRIX 73

If we then regress theY on the transformedX we see there is barely any infor-
mation about the the second class. These is clearly seen in the left side of Figure
5.2.

Figure 5.3: Projection to best direction and regression ofY onto this projection

However, by making the regression function a bit more flexible, we can do a
bit better. One way to do this is to use the quadratic terms (there are 3, which
are they?) In Figures 5.2 and 5.2 this linear regression version that includes the
quadratic term does much better.

However, if we increase the number of classes toK = 4 we would then need to
start adding the cubic terms and now we are dealing with lots of variables.

A Data set that we may be working on later will be the vowel sound data. Figure
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5.2 contains a plot of the first 2 coordinates and the classes.

Figure 5.4: Vowel sound data

5.3 Linear Discriminant Analysis

Decision theory for classification tells us what we need to know the class posteri-
orsPr(G|X) for optimal classification.

Supposefk(x) is the class conditional density ofX in a classG = k, and letπk

be the prior probability of classk, with
∑K

k=1 πk = 1. A simple application of
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Bayes theorem gives us

Pr(G = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

.

Notice that having the quantitiesfk(x) is almost equivalent to having thePr(G =
k|X = x) that provide Bayes rule.

Suppose we model each class density as a multivariate Gaussian

fk(x) =
1

(2π)p/2|Σk|1/2
exp{−1

2
(x− µk)

′Σ−1
k (x− µk)}

Figure 5.3 shows regions that contain 95% of the data for three bivariate distri-
butions with different means but the same covariance structure. The covariance
structure makes these be ellipses instead of circles.

The lines are Bayes rule.

Linear discriminant analysis (LDA) arises when we assume the covariance struc-
ture is the same for all classes. In this case we can see that discrimination function
is simply

δk(x) = x′Σ−1µk −
1

2
µkΣ

−1µk + log πk

Notice: if we assumeπk = 1/K then the last term is not needed. In any case,
notice that this is a linear function ofx!

In practice we do not have the meansµ and the covariance structureΣ. The
strategy is to use the training data to estimate these. In Figure 5.3 we see some
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outcomes a three class simulation. The distributions used to create them where
those shown in the left side of 5.3.

Figure 5.5: Bivariate normal distributions, outcomes of these, and the Bayes and
LDA prediction rules

To estimate the parameters we simply

• π̂k = Nk/N , whereNk is the observed number of subjects in classk.

• µ̂k =
∑

gi=k xi/Nk

• Σ̂ =
∑K

k=1

∑
gi=k(xi − µ̂k)(xi − µ̂k)

′/(N −K)
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Figure 5.3 also show both the Bayes rule (dashed) and the estimated LDA decision
boundary.

Technical Note: For two classes LDA is the same as regression.

Now if we assume that each class has its own correlation structure then we no
longer get a linear estimate. Instead we have that the decision boundary is simply:

δk(x) = −1

2
|Σk| −

1

2
(x− µk)

′Σ−1(x− µk) + log πk

The decision boundary is now described with a quadratic function. This is there-
fore called quadratic discriminant analysis (QDA).

QDA and LDA decision boundaries are shown in Figure 5.3 for the same data.

Notice that both LDA and QDA are finding the centroid of classes and then finding
the closest centroid to the new data point. However, correlation structure is taken
into consideration when defining distance.

Note: When the number of covariates grows the number of things to estimate in
the covariance matrix gets very large. One needs to be careful.

There is a method that tries to find a happy medium calledRegularized Discrim-
inant Analysis. Basically it comes down using shrunken version of the class spe-
cific covariance structures.

Σ̂k(α) = αΣ̂k + (1− α)Σ̂
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Figure 5.6: QDA and LDA with quadratic terms and straight LDA
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5.3.1 Computations for LDA

Suppose we compute the eigen decomposition for eachΣ̂k = UkDkU
′
k, where

Uk is p × p orthonormal andDk a diagonal matrix of positive eigenvaluesdkl.
The ingredients forδk(x) are

• (x− µ̂k)
′Σ̂

−1

k (x− µ̂k) = [U′
k(x− µ̂k)]

′D−1
k [U′

k(x− µ̂k)]

• log |Σ̂k| =
∑

l log dkl.

Notice this is much easier to compute because theD are diagonal!

Given this we can now compute and interpret the LDA classifier as follows:

• Spherethe data with respect to the common covariance estimateΣ̂: X∗ =
D− 1

2U′X whereΣ̂ = UDU′
k. The common covariance estimate ofX∗

will no be the identity matrix!

• Classify to the closest class centroid in the transformed space, modulo the
effect of the class prior probabilityπk.

Note: Section 4.3.3 of the book has a nice description of how LDA provides the
solution as what one obtains when asking for the linear combinationZ = a′X
that provides the biggest ration of within
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5.4 Logistic Regression

Assume

log
Pr(G = 1|X = x)

Pr(G = K|X = x)
= β01 + β′1x

log
Pr(G = 2|X = x)

Pr(G = K|X = x)
= β01 + β′2x

...

log
Pr(G = K − 1|X = x)

Pr(G = K|X = x)
= β01 + β′K−1x

Noticeg(p) = log( p
1−p

) is called the logistic link and isg : (0, 1) → R

WhenK = 2 this has a very simple form (only one set of covariates) and is a very
popular model used in biostatistical applications.

With this probability model we can now write the log-likelihood...

l(β0, β; y) =
N∑

i=1

{yi log pi + (1− yi) log(1− pi)}

• Out estimate will be the MLE:maxβ0,β l(β0, β; y).

• In practice how do we find this maximum? We will see this later.

The rest of this sections presents some technical details about maximum likeli-
hood estimates.
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5.4.1 Elementary Likelihood Theory

In linear model theory we found: E(β̂), var(β̂), and the asymptotic properties of
β̂ . To do this for the MLE’s we need to develop some asymptotic theory.

We will derive some properties that will be useful. We will give some of the main
results without presenting proofs. If you are interested in the details lookup the
following books:

• Bickel P. and Doksum K.Mathematical Statistics: Basic Ideas and Topics.
(1977) Holden-Day

• Lehman, E.Theory of Point Estimation (1983) Wadsworth & Brooks/Cole.

SayY has density functionfY (y; β) then remember∫
y∈A

fY (y; β) dy = 1

hereA is the range ofY .

First we will assumeβ is 1 dimensional.

We define the log-likelihood functionl(β; y) = log fY (y; β).

In GLM we will usually assume that the data are independent observations com-
ing from a density determined by the parameterβ. If Y is a vector havingn
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independent components then the log-likelihood is a sum ofn independent terms

l(β;y) =
n∑

i=1

log fYi
(yi; β)

Notice the following

• We consider the log-likelihood as a function ofβ given the observed datay.

• The log-likelihood is always a real number.

• We allowβ to “move” so we assumeβ ∈ β a parameter space, so we are
actually defining a family of distributions:{f(y; β) : β ∈ β}

• We will specify a true distribution with a true parameterβ0. The expected
value and probability measure with respect to that density will be denoted
Eβ0 andPrβ0.

For the results described in this sections to hold, the family of densities must
satisfy some regularity condition. We will call the family of densities ML-regular
if they satisfied these conditions. See L&C or B & D.

If Y is a vector havingn independent components with joint distribution that is
ML-regular, then

• Eβ0{l(β0;Y)} > Eβ0{l(β;Y)}

• limn→∞ Pβ0 [l(β0;Y) > l(β;Y)] = 1
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for all β 6= β0.

The first part of this result says that the value considered to be thetrue value of
the parameter maximizes the expected log-likelihood. The second part says that
the chance of the log-likelihood being bigger at the true value is VERY likely for
large values ofn.

This properties motivate the use of ML-estimation. Given the observed data we
estimate the true parameter with the maximum likelihood estimate (MLE) is de-
fined as

β̂ = max
β∈B

l(β;y) (5.1)

A consequence of Theorem 1 is the consistency of the MLE.

Theorem 2. Definêβn as the MLE ofβ0 whenn observations are used. Thenβ̂n

converges in probability toβ0.

Define thescore statistic as:

U(β;y) =
∂l(β;y)

∂β
=

n∑
i=1

∂ log fYi
(yi; β)

∂β

Notice that, just like the log-likelihood, this is a function ofβ once the random
variableY is observed to bey.

Why are we defining this ?

The maximum likelihood estimate (MLE) defined by (5.1), under the regularity
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conditions, is equivalent to finding theβ for whichU(β;y) = 0.

Notice that the score statistic may be considered to be a random variable since it
is a function of the data. Once we obtain the data we find the value ofβ that has
0 score, the MLE.

How good of a statistic is the score statistic?

First notice that

Eβ0{U(β0;Y)} = Eβ

(
∂l(β;Y)

∂β

∣∣∣∣
β=β0

)
= 0

This shows that the score has expected value of 0 at the trueβ0, which is what we
want.

The next thing we would like is to see how variable it is... how precise is our
estimate? Look at the variance. One important property is that

varβ0{U(β0;Y)} = varβ0

(
∂l(β;Y)

∂β

∣∣∣∣
β=β0

)
= −Eβ0

(
∂2l(β;Y)

∂β2

∣∣∣∣
β=β0

)
= In(β)

This last quantity is called Fisher’s information quantity. It is telling us how much
“information” about the true parameter is given by the data.
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5.4.2 Asymptotic results

Under regularity conditions

In(β)−
1
2 U(β;yn) ∼ N(0, 1) + Op(n

− 1
2 )

Example 3.1I.I.D Normal we have distribution

fY (yn; β0) =
1√

2πσ2
exp

{
1

2σ2

n∑
i=1

(yi − β0)
2

}
with σ2 known.

For datayn we have log-likelihood function

l(β;yn) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − β)

Notice that we can calculate the expected value of the log-likelihood for anyβ.

E[2l(β;Yn)] = E[−n log(2πσ2)− 1

σ2

n∑
i=1

[(yi − β0)− (β − β0)]
2]

= −N

[
log(2πσ2) + 1 +

(β − β0)

σ2

]
Notice that the maximum occurs atβ0 as Theorem 1 implies.

We can similarly show that

Pr[l(β0;yn) > l(β;yn)] = Pr[2{l(β0;yn)− l(β;yn)} > 0]

≥ Pr

[
|Ȳ − β0| >

N

2
|β − β0|

]
→ 1
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The score statistic is

U(β;yn) =
1

σ2

∑
(yi − β)

From here it is obvious that the MLE iŝβn = ȳ, that Eβ0 [U(β0;Yn)] = 0, and

varβ0 [U(β0;Yn)] = n/σ2 = −Eβ0

[∑
− 1

σ2

]
= In(β0)

It is known that √
N(Ȳ − β)/σ2 → N(0, 1)

here the convergence is in distribution. Notice that this isIn(β)1/2U(β;yn).

What we really want to know is the asymptotic distribution of MLE not the score
equation.

Use usual trick... since Theorem 2 tell us thatβ̂n is close toβ0 we can use a Taylor
expansion to write the MLE as a linear combination of the score equation.

U(β0;yn) ≈ U(β̂n;yn) +
∂U(β;yn)

∂β

∣∣∣∣
β=β̂n

(β0 − β̂n)

NoticeU(β̂n;yn) = 0.

∂U(β;yn)

∂β

∣∣∣∣
β=β̂n

≈ E

[
∂U(β;Yn)

∂β

∣∣∣∣
β=β̂n

]

≈ E

[
∂U(β;Yn)

∂β

∣∣∣∣
β=β0

]
= −In(β0)
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So we have
U(β0;yn) ≈ −In(β0)(β0 − β̂n)

which implies

In(β0)
−1/2U(β0;yn) ≈ In(β0)

1/2(β̂n − β0)

SoIn(β0)
1/2(β̂n − β0) is approximately standard normal whenn is big.

5.4.3 Algorithm for fitting GLMs

We want to obtain the MLE but in general there is no way of getting it in closed
form. Instead we must use some minimization procedure. For GLMs there is a
nice trick that reduces the minimization procedure to a iterative re-weighted least
squares procedure

Say we have some data and we have specified all the necessary elements to define
a GLM

Let g(·) be the link function. Notice that for alli, yi should be somewhat close to
µi so we can write

g(yi) ≈ g(µi) + g′(µi)(yi − µi)

= ηi + (yi − µi)
dηi

dµi

Notice hat we have a linear model with a deterministic and random part.
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LettingZi = g(Yi) andεi = (Yi − µi)
dηi

dµi
we have

Z = Xβ + ε

where theεi’s are IID with varianceV (µi)
φ
wi

(
dηi

dµi

)2

Notice that with this regression model the MLE is obtained by minimizing the
weighted least squares with quadratic weights

Wi =

(
V (µi)

φ

wi

(
dηi

dµi

)2
)−1

(5.2)

In this case the solution is(X′WX)−1X′Wz. Problem the weights depend on
β...

In this case we may use iteratively re-weighted least squares.

The procedure is as follows

1. Letβ(0) be the current estimate andη(0) andµ(0) be the values derived from
it.

2. Define

z(0) = η(0) + (y − µ(0))

(
dη

dµ

∣∣∣∣
η=η(0)

)

3. Define the weightsW (0)
i by evaluating equation (5.2) withη(0).
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4. Obtain new estimatesβ(1) using weighted least squares. From this from
new estimateη(1) and from this fromz(1).

5. Iterate until||z(1) − z(0)|| is small

5.4.4 Justification for the fitting procedure

How do we know the estimate obtained from the procedure described above is
equivalent to the MLE.

Once we specify a model we find the MLE by maximizing the log-likelihood or
equivalently

Find MLE by solving the system of equationsU(β;y) = 0 or

∂l

∂βj

= 0, for j = 1, . . . , p

But we don’t necessarily know how the log-likelihood depends onβ.

We are going to abuse notation for a bit and stop writing the indexi:

For each observation, we know how:

• the log-likelihood depends onθ (by the way we define the distributions)
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• θ depends on the meanµ (from the exponential family propertyµ = b′(θ))

• µ depends on the linear predictorη (the link function specifies this)

• η depends onβ (η is a linear combination of the components ofβ)

To find ∂l
∂βj

simply use the chain rule.

∂l

∂βj

=
∂l

∂θ

dθ

dµ

dµ

dη

∂η

∂βj

Lets see what each one of these pieces is... We know that

For each observationl = {yθ − b(θ)}/a(φ) + c(y, φ) so

∂l

∂θ
= (y − µ)/a(φ)

Fromb′(θ) = µ andb′′(θ) = V (µ) we derivedµ/dθ = V (µ).

Finally fromη =
∑

βjx·j we obtain ∂η
∂βj

= x·j

ThereforeThe contribution from observationi from thej-th equation of the score
statistic is

yi − µi

a(φ)

1

V (µi)

dµi

dηi

xij

Notice that(a(φ)V (µi))
−1dηixij is Wi

dηi

dµi
.
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By adding up the contribution to the likelihood of each observation we can know
write

The system of equation involving the scoreU can be written as

uj =
n∑

i=1

Wi(yi − µi)
dηi

dµi

xij for j = 1, . . . , p

with Wi as in equation (5.2).

Newton-Rapson’s methodto find the the solution toU = 0 consist on iterating
using

A(β(1) − β(0)) = U(0)

with

A = − ∂2l

∂β2

∣∣∣∣
β=β(0)

to obtain the next “estimate” ofβ

Fisher’s score methodworks similarly but instead uses

A = E

(
− ∂2l

∂β2

∣∣∣∣
β=β(0)

)

Takes expectations simplifies the computations for the procedure and statistically
ends up being the same.

Notice that in many instances∂2l/∂β2 is a constant and Fisher’s method is equiv-
alent to Newton-Rapson’s
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Notice that thej, k entry ofA is

E

(
∂uj

∂βk

)
= E

(
n∑

i=1

(yi − µi)
∂

∂βk

{
Wi

dηi

dµi

xij

}
+ Wi

dηi

dµi

∂

∂βk

(yi − µi)

)
Notice that the first term has expectation0 and that the second term is

n∑
i=1

Wi
dηi

dµi

xij
∂µi

∂βk

=
n∑

i=1

Wixijxik

SoA = (X′WX), with W = diag[Wi] = diag[var−1(Zi)].

The new estimate satisfies

Aβ(1) = Aβ(0) + U(0)

and notice thatj − th entry of the vectorAβ(0) is

[Aβ(0)]j = X′
jWXjβj =

n∑
i=1

Wixijηi

This means that the j-th entry of

Aβ
(1)
j =

n∑
i=1

Wixij

{
ηi − (yi − µi)

∂ηi

∂µi

}
So

Aβ(1) = X′Wz(0)

And the solution to this equation is the weighted regression estimate

β(1) = (X′WX)−1X′Wz(0)

Which is what the suggested procedure does.
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5.4.5 Initial values

One advantage of this procedure is that we can use the use the transformed data
as initial values for thez. This sometimes presents a problem. For example when
modeling with Poisson and we obtain a0 then the starting value will belog(0).
Problems like these need to be addressed. Notice, R does it for you.

5.4.6 Summary

• The MLE parameter̂β satisfy a self-consistency relationship: they are the
coefficients of a weighted least squares fit, where the responses are

zi = x′iβ̂ +
yi − p̂i

p̂i(1− p̂i)
,

and the weights arêpi(1− p̂i). This connection implies the following

• The weighted residuals of sum-of-squares is the familiar Pearson chi-square
statistic.

(yi − p̂i)
2

p̂i(1− p̂i)
,

a quadratic approximation of the variance

• Asymptotic results give tell us the coefficients converge toN(β, (X′WX)−1).
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5.5 Logistic Regression versus LDA

Notice logistic regression provides a similar solution to LDA.

Using Bayes theory we can show that

log
Pr(G = k|X = x)

Pr(G = K|X = x)
= log

πk

πK

−1

2
(µk+µK)′Σ−1(µk−µK)+x′Σ−1(µk−muK)

which can be re-written as

log
Pr(G = k|X = x)

Pr(G = K|X = x)
= α0k + α′kx.

For logistic regression we explicitly write

log
Pr(G = k|X = x)

Pr(G = K|X = x)
= β0k + β′kx.

The difference comes from how the parameters are estimated. Notice that the
estimates of theαs use the parameters of the conditional distribution ofx which
was assumed to be normal.

Thus, the main difference is that LDA imposes a distribution assumption onX
which, if a good, will result in more efficient estimates. If the assumption is in
fact true the estimates will be 30% more efficient. Logistic regression is condi-
tional methodology. We condition onX and do not specify any distribution for it.
This presents a big advantage in cases were we know theX can’t be normal, e.g.
categorical variables.
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However, in practice the two methods perform similarly. Even in extreme cases
with categorical covariates.


