
Chapter 7

Model Assessment and Selection

We have defined various smoothers and nonparametric estimation techniques. In
classical statistical theory we usually assume that the underlying model generating
the data is in the family of models we are considering. In this case bias is not
an issue and efficiency (low variance) is all that matters. Much of the theory in
classical statistics is geared towards finding efficient estimators.

In this course we try not make the above assumptions. Furthermore, for the te-
chiniques we have shown (and will show) asymptotic and finite sample bias and
variance estimates are not always easy (many times impossible) to find in closed
form. In this Chapter we discuss monte carlos simulation, in sample approxima-
tion, and resampling methods that are commonly used to get estimates of predic-
tion error.
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Figure 7.1: Expected test and train errors. Notice the expected train error is the
EPE.

Remember that the main difficulty with model assessment and selection is that the
observed prediction error for training data becomes smaller with model complex-
ity regardless of the prediction ability on the test data. See figure 7.1.

In this Chapter we will look at a specific example: choosing smoothing param-
eters. For the methods defined in this class, the complexity of the model being
considered is controled by the smoothing parameter. Remember how most of the
smoothers we have defined have some parameter that controls the smoothness of
the curve estimate. For kernel smoothers we defined the scale parameter, for lo-
cal regression we defined the span or bandwidth, and for penalized least squared
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probelsm we have the penalty term. We will call all of thesethe smoothing pa-
rameterand denote it withλ. It should be clear from the context which of the
specific smoothing parameters we are referring to.

7.1 Introduction

Typically there are two parts to solving a prediction problem: model selection and
model assessment. In model selection we estimate the performance of various
competing models with the hope of choosing the best one. Having chosen the
final model, we assess the model by estimating the prediction error on new data.

Remember that the best model is defined as the one with the lowest EPE:

EPE(λ) = E[L{Y − f̂λ(X)}]

WhereY andX are drawn at random from the population and the expectation
averages anything that is random.

Typical loss function are squared error,L(Y, f̂(X)) = (Y − f̂(X))2, and absolute
error,L(Y, f̂(X)) = |Y − f̂(X)|.

We define training error is the observed average loss

1

N

N∑
i=1

L{yi, f̂(xi)}
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With squared errro loss this is the residual sum of squares divide by N, which we
will call the Average Squared Error (ASE).

For categorical data, using square loss doesn’t make much sense. Typical loss
functions are 0-1 loss,L(G, Ĝ(X)) = 0 if G = Ĝ(X), 0 otherwise, and the log-
likelihood: L(G, Ĝ(X)) = −2

∑K
k=1 I(G = k) log p̂k(X) = −2 log p̂G(X). The

latter is also calledcross-entropy. Notice the -2 is used so that for normal error it
is becomes equivalent to the loss function.

The training errors are obtained as in the continous example. For 0-1 loss it is sim-
ple the percentage of times we are wrong in the training data. For the likelihood
loss we simply use the observerd log-likelihood times -2/N:

− 2

N

N∑
i=1

log p̂gi
(xi)

As we have discussed various times the training error underestimates the test error
or EPE. In today’s lectures we describe ways of getting better estimates of EPE.

7.2 Split Samples

When the amount of data and computation time permits it, there is no method
better than data splitting. The idea is simple: Divide the data in three parts: train,
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validation, and test. We use the train and validation data to select the best model
and the test data to assess the chosen model.

The recipe is the following:

1. In the first part, model selection, the validation model is treated as the test
data. We train all competing model on the train data and define the best
model as the one that predicts best in the validation set. We could replit
the train/validation data, do this many times, and select the method that, on
average, best performs.

2. Because we chose the best model among many competitors, the observed
performance will be a bit biased. Therefore, to appropriately assess perfor-
mance on independent data we look at the performance on the test set.

3. Finally, we can resplit everything many times and obtain average results from
steps 1) and 2).

There is no obvious choice on how to split the data. It depends on the signal to
noise ratio which we, of course, do not know. A common choice is 1/2, 1/4, and
1/4.

There are two common problems:

When the amout of data is limited, the results from fitting a model to 1/2 the data
can be substantially different to fitting to all the data. An extreme example: We
have 12 data points and want to consider a regression model with 7 parameters.
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Model fitting might have high computational requirements.

In this Chapter we describe somein-samplemethods for model selection as well
as less biased split sample methods. We also describe monte-carlo simulations
which we can use to find, in theory, the best model without even collecting data.

7.3 Bias-Variance tradeoff

We want to estimatef and assume our data comes from the following model:

Yi = f(Xi) + εi

with theε IID, independent ofX, and varianceσ2.

Suppose we are using loess and want to decide what is the best spanλ.

To quantify “best”, we say it is theλ that minimizes the expected prediction error:

EPE(λ) = E[{Y − f̂λ(X)}2] (7.1)

Where, as mentioned,Y andX are drawn at random from the population and the
expectation averages anything that is random.



134 CHAPTER 7. MODEL ASSESSMENT AND SELECTION

The above is better understood in the following way. Letf̂λ be the estimate ob-
tained with the training data. Now, imagine that we get a completely independent
data point. Let’s simplify by assumingX = x∗ is fixed. So what we are looking
to minimize is simply

E[Y ∗ − f̂λ(x
∗)]

This can be broken up into the following pieces.

σ2 + {E[f̂λ(x
∗)]− f(x∗)}2 + var[f̂λ]

The first term is due to unpredictable measurement error. There is nothing we can
do about it. The second term is bias of the estimatore (squared) and the last term
is the estimator’s variance.

Notice that the above calculation can be done because theY ∗
i s are independent of

the estimateŝfλ(xi)s, the same can’t be said about theYis.

In general, we want to pick aλ that performs well for allx. If instead of just one
new points we obtainN then we would have

1

N

N∑
i=1

E[Y ∗
i − f̂λ(x

∗
i )] = σ2 + {E[f̂λ(x0)]− f(x0)}2 + var[f̂λ]
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If we instead assumeX is random we can use expectations instead of averages
and we are back to our original equation (7.1).

7.3.1 Bias-variance trade-off for linear smoothers

DefineSλ as the hat matrix for a particular smoother when the smoothing param-
eterλ is used. The “smooth” will be written aŝfλ = Sλy.

Define

vλ = f − E(Sλy)

as thebiasvector.

Define ave(x2) = n−1
∑n

i=1 x2
i for any vectorx. We can derive the following

formulas:

MSE(λ) = n−1

n∑
i=1

var{f̂λ(xi)}+ ave(v2
λ)

= n−1tr(SλS
′
λ)σ

2 + n−1v′
λvλ

EPE(λ) = {1 + n−1tr(SλS
′
λ)}σ2 + n−1v′

λvλ.

Notice for least-squares regressionSλ is idempotent so that tr(SλS
′
λ) = tr(Sλ) =

rank(Sλ) which is usually the number of parameters in the model. This is why
we will sometimes refer to tr(SλS

′
λ) as theequivalent number of parametersor

degrees of freedom of our smoother.
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7.4 Monte-Carlo Simulations

We will demonstrate using the example above.

With Monte Carlo simulation we try to create data ourselves (with a computer)
using a random model that we hope is similar to reality.

In the example above, we need to decide what isf , the pointsx, or the distribution
of X, and the distribution ofε. Notice the possibilities are endless.

So for our loess example, say we think the process we are interested in describing
produces andf similar to2 sin(1/x). The rest of the model is specified by (7.2):

yi = 2 sin(1/x) + εi, i = 1, . . . , n (7.2)

with theεi IID N(0, 1).

Figure 7.2 is one instace of our data:
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Figure 7.2: Outcomes of model withf(x) = 2 sin(1/x) and IID normal errors
with σ2 = 1
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Here is the R code I used:

B <- 1000
sigma <- 1
lambdas <- seq(0.15,0.6,len=30) ##lambdas to try
trainerror <- vector(‘‘numeric’’,length=length(lambdas))
testerror <- vector(‘‘numeric’’,length=length(lambdas))
for(i in 1:B){ ## we want the same y for all competitors

x <- sort(runif(N,.09,.5))
f <- 2*sin(1/x)
y <- f + rnorm(N,0,sigma)
testy <- f + rnorm(N,0,sigma)
for(j in seq(along=lambdas)){

yhat <- loess(y˜x,span=lambdas[j])$fitted
trainerror[j] <- trainerror[j] + sum((y-yhat)ˆ2)/B
testerror[j] <- testerror[j] + sum((testy-yhat)ˆ2)/B

}
}
plot(-lambdas,trainerror,ylim=range(c(trainerror,testerror)),xlab=’’Model
complexity’’,ylab=’’Expected RSS’’,type=’’l’’,col=1,lty=1,xaxt=’’n’’)
lines(-lambdas,testerror,col=2,lty=2)
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Figure 7.3: Outcomes of model (7.2)

7.5 Cross Validation: Choosing smoothness param-
eters

In the section, and the rest of the class, we will denote withf̂λ the estimate ob-
tained using smoothing parameterλ. Notice that usually what we really have is
the smootĥfλ.

We will use the model defined by (7.2). Figure 7.3 shows one outcome of this
model with normal and t-distributed errors.
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In practice it is not common to have a new set of datay∗i , i = 1, . . . , n. Cross-
validation tries to imitate this by leaving out points(xi, yi) one at a time and
estimating the smooth atxi based on the remainingn − 1 points. The cross-
validation sum of squares is

CV(λ) = n−1

n∑
i=1

{yi − f̂−i
λ (xi)}2

wheref̂−i
λ (xi) indicates the fit atxi computed by leaving out thei− th point.

We can now use CV to chooseλ by considering a wide span of values ofλ,
computing CV(λ) for each one, and choosing theλ that minimizes it. Plots of
CV(λ) vs. λ may be useful.

Why do we think this is good? First notice that

E{yi − f̂−i
λ (xi)}2 = E{yi − f(xi) + f(xi)− f̂−i

λ (xi)}2

= σ2 + E{f̂−i
λ (xi)− f(xi)}2.

Using the assumption that̂f−i
λ (xi) ≈ f̂λ(xi) we see that

E{CV(λ)} ≈ EPE(λ)

However, what we really want is

min
λ

E{CV(λ)} ≈ min
λ

EPE(λ)

but the law of large numbers says the above will do.

Why not simply use the averaged squared residuals

ASR(λ) = n−1

n∑
i=1

{yi − f̂λ(xi)}2?
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It turns out this under-estimates the EPE. Notice in particular that the estimate
f̂(xi) = yi always has ASR equal to 0! But we know the EPE will not be small.

Later we will learn of a couple of ways we can adjust the ASR to form “good”
estimates of the MSE.

7.5.1 CV for linear smoothers

Now we will see some of the practical advantages of linear smoothers.

For linear smoothers in general it is not obvious what is meant byf̂−i
λ (xi). Let’s

give a definition...

Notice that any reasonable smoother will smooth constants into constants, i.e.
S1 = 1. If we think of the rowsSi· of S as weights of a kernels, this condition is
requiring that all then weights in each of then kernels add up to 1. We can define
f̂−i

λ (xi) as the “weighted average”

Si·y =
n∑

j=1

Sijyj

but giving zero weight to theith entry, i.e.

f̂−i
λ (xi) =

1

1− Sii

∑
j 6=i

Sijyj.

From this definition we can find CV without actually making all the computations
again. Lets see how:
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Notice that
f̂−i

λ (xi) =
∑
j 6=i

Sijyj + Siif̂
−i
λ (xi).

The quantities we add up to obtain CV are the squares of

yi − f̂−i
λ (xi) = yi −

∑
j 6=i

Sijyj − Siif̂
−i
λ (xi).

Adding and subtractingSiiyi we get

yi − f̂−i
λ (xi) = yi − f̂λ(xi) + Sii(yi − f̂−i

λ (xi))

which implies

yi − f̂−i
λ (xi) =

yi − f̂λ(xi)

1− Sii

and we can write

CV(λ) = n−1

n∑
i=1

{
yi − f̂λ(xi)

1− Sii

}2

so we don’t have to computêf−i
λ (xi)!

Lets see how this definition of CV may be useful in finding the MSE.

Notice that the above defined CV is similar to the ASR except for the division by
1− Sii. To see what this is doing we notice that in many situationsSii ≈ [SλSλ]ii
and1/(1− Sii)

2 ≈ 1 + 2Sii which implies

E[CV(λ)] ≈ EPE(λ) + 2ave[diag(Sλ)v
2].

Thus CV adjusts ASR so that in expectation the variance term is correct but in
doing so induces an error of2Sii into each of the bias components.
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Figure 7.4: CV, MSE, and fits obtained for the normal and t models.

In Figure 7.4 we see the CV and MSE forn = 100 andn = 500 observatios

7.6 Mallow’s Cp

The following three sections describe the related ways of choising the best model
using only the training data. These are sometimes call in-sample methods. They
were originally developed in the context of parametric models. For example,
Mallow’s Cp was developed for chosing the number of covariates in a regression
model (Mallows 1973).

The basic idea is to start with to try estimate the expected difference between ASR
and EPE. Remember ASR is a random quantity and EPE is not!

The larger the model, the more ASR understimates EPE. For a linear model with
p covariates, Mallow’s Cp estimates this bias with2 ∗ d/N ∗ˆ2. A problem here
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is that we need to estimatêσ2. Which model do we use? Typically, a big model
(small bias) is used. Below I include some notes on the calculations as presented
by the Mallow.

The Cp statistic is defined as a criteria to assess fits when models with different
numbers of parameters are being compared. It is given by

Cp =
RSS(p)

σ2
−N + 2p (7.3)

If model(p) is correct then Cp will tend to be close to or smaller thanp. Therefore
a simple plot of Cp versusp can be used to decide amongst models.

In the case of ordinary linear regression, Mallow’s method is based on estimating
the mean squared error (MSE) of the estimatorβ̂p = (X′

pXp)
−1X′

pY,

E[β̂p − β]2

via a quantity based on the residual sum of squares (RSS)

RSS(p) =
N∑

n=1

(yn − xnβ̂p)
2

= (Y −Xpβ̂p)
′(Y −Xpβ̂p)

= Y′(IN −Xp(X
′
pXp)

−1X′
p)Y

Here IN is an N × N identity matrix. By using a result for quadratic forms,
presented for example as Theorem 1.17 in Seber’s book, page 13, namely

E[Y′AY] = E[Y′]AE[Y] + tr[ΣA]
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Σ being the variance matrix ofY, we find that

E[RSS(p)] = E[Y′(IN −Xp(X
′
pXp)

−1X′
p)Y]

= E[β̂p − β]2 + tr
[
IN −Xp(X

′
pXp)

−1X′
p

]
σ2

= E[β̂p − β]2 + σ2
(
N − tr

[
(X′

pXp)(X
′
pXp)

−1
])

= E[β̂p − β]2 + σ2(N − p)

whereN is the number of observations andp is the number of parameters. Notice
that when the true model hasp parameters E[Cp] = p. This shows why, if model(p)
is correct, Cp will tend to be close top.

One problem with the Cp criterion is that we have to find an appropriate estimate
of σ2 to use for all values ofp.

Cp for smoothers

A more direct way of constructing an estimate of EPE is to correct the ASR. It is
easy to show that

E{ASR(λ)} =
{
1− n−1tr(2Sλ − SλS

′
λ)

}
σ2 + n−1v′

λvλ

notice that
EPE(λ)− E{ASR(λ)} = n−12tr(Sλ)σ

2

This means that if we knewσ2 we could find a “corrected” ASR

ASR(λ) + 2tr(Sλ)σ
2
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with the right expected value.

For linear regression tr(Sλ) is the number of parameters so we could think of
2tr(Sλ)σ

2 as a penalty for large number of parameters or for un-smooth estimates.

How do we obtain an estimate forσ2? If we had aλ∗ for which the bias is 0, then
the usual unbiased estimate is

∑n
i=1{yi − fλ∗(xi)}2

n− tr(2Sλ∗ − Sλ∗S′
λ∗)

The usual trick is to chose one aλ∗ that does little smoothing and consider the
above estimate. Another estimate that has been proposed it the first order differ-
ence estimate

1

2(n− 1)

n−1∑
i=1

(yi+1 − yi)
2

Once we have an estimateσ̂2 then we can define

Cp = ASR(λ) + n−12tr(Sλ)σ̂
2

Notice that thep usually means number of parameters so it should beCλ.

Notice this motivates a definition for degrees of freedoms.
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7.7 AIC

Akaike (1977) developed a correction for more general situations, i.e. not just the
squared error case. The AIC derives a correction for the training error with the
more general likelihood loss. To do this

The AIC is simply:

AIC = − 2

N
loglik + 2d/N

This reduces to Mallow’sCp in the case of Gaussian likelihood. Below is the
derivation as shown by Akaike (1977).

Remember that the number of parameters can be defined by smoothers too!

Suppose we observe a realization of a random variableY , with distribution defined
by a parameterβ ∏

xi∈N0

f(yi;xi, β) ≡ fY(y;X, β) (7.4)

wherey is the observed response associated with the covariatesX andβ ∈ RP is
aP × 1 parameter vector.

We are interested in estimatingβ. Suppose that before doing so, we need to
choose from amongstP competing models, generated by simply restricting the
general parameter spaceRP in whichβ lies.

In terms of the parameters, we representthe full model with P parameters as:

Model(P):fY(y;x, βP ), βP = (β1, . . . , βp, βp+1, . . . , βP )′.
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We denote the “true value” of the parameter vectorβ with β∗.

Akaike (1977) formulates the problem of statistical model identification as one of
selecting a modelfY(y;x, βp) based on the observations from that distribution,
where the particular restricted model is defined by the constraintβp+1 = βp+2 =
. . . = βP = 0, so that

Model(p):fY(y;x, βp), βp = (β1, . . . , βp, 0, . . . , 0)′ (7.5)

We will refer top as thenumber of parameters and toΩp as the sub-space ofRP

defined by restriction (7.5). For eachp = 1, . . . , P , we may assume model(p) to
estimate the non-zero components of the vectorβ∗. We are interested in a criterion
that helps us chose amongst theseP competing estimates.

Akaike’s original work is for IID data, however it is extended to a regression
type setting in a straight forward way. Suppose that the conditional distribution
of Y givenx is know except for aP -dimensional parameterβ. In this case, the
probability density function ofY = (Y1, . . . , Yn) can be written as

fY(y;X, β) ≡
n∏

i=1

f(yi;xi, β) (7.6)

with X the design matrix with rowsxi.

Assume that there exists a true parameter vectorβ∗ defining a true probability
density denoted byfY(y;X, β∗). Given these assumptions, we wish to selectβ,
from one of the models defined as in (7.5), “nearest” to the true parameterβ∗

based on the observed datay. The principle behind Akaike’s criterion is to define
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“nearest” as the model that minimizes the Kullback-Leibler Information Quantity

∆(β∗;X, β) =

∫
{log fY(y;X, β∗)− log fY(y;X, β)} fY(y;X, β∗) dy.

(7.7)

The analytical properties of the Kullback-Leibler Information Quantity are dis-
cussed in detail by Kullback (1959) . Two important properties for Akaike’s cri-
terion are

1. ∆(β∗;X, β) > 0 if fY(y;X, β∗) 6= fY(y;X, β)

2. ∆(β∗;X, β) = 0 if and only if fY(y;X, β∗) = fY(y;X, β)

almost everywhere on the range ofY. The properties mentioned suggest that
finding the model that minimizes the Kullback-Leibler Information Quantity is an
appropriate way to choose the “nearest” model.

Since the first term on the right hand side of (7.7) is constant over all models we
consider, we may instead maximize

H(β) =

∫
log fY(y;X, β)fY(y;X, β∗) dy

=
n∑

i=1

∫
log f(yi;X, β) f(yi;xi, β

∗) dyi. (7.8)

Let β̂p be the maximum likelihood estimate under Model(p). Akaike’s procedure
for model selection is based on choosing the model which produces the estimate
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that maximizes Eβ∗

[
H(β̂p)

]
amongst all competing models. Akaike then derives

a criterion by constructing an asymptotically unbiased estimate of Eβ∗

[
H(β̂p)

]
based on the observed data.

Notice thatH(β̂p) is a function, defined by (7.8), of the maximum likelihood
estimateβ̂p, which is a random variable obtained from the observed data. A
natural estimator of its expected value (under the true distribution of the data) is
obtained by substituting the empirical distribution of the data into (7.8) resulting
in the log likelihood equation evaluated at the maximum likelihood estimate under
model(p)

l(β̂p) =
n∑

i=1

log f(yi;xi, β̂p).

Akaike noticed that in generall(β̂p) will overestimate Eβ∗

[
H(β̂)

]
. In particular

Akaike found that under some regularity conditions

Eβ∗

[
l(β̂p)−H(β̂p)

]
≈ p.

This suggests that larger values ofp will result in smaller values ofl(β̂p), which
may be incorrectly interpreted as a “better” fit, regardless of the true model. We
need to “penalize” for larger values ofp in order to obtain an unbiased estimate of
the “closeness” of the model. This fact leads to the Akaike Information Criteria
which is a bias-corrected estimate given by

AIC(p) = −2l(β̂p) + 2p. (7.9)

See, for example, Akaike (1973) and Bozdogan (1987) for the details.
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7.8 BIC

Objections have been raised that minimizing Akaike’s criterion does not produce
asymptotically consistent estimates of the correct model Notice that if we consider
Model(p∗) as the correct model then we have for anyp > p∗

Pr [AIC(p) < AIC(p∗)] = Pr
[
2{l(β̂p)− l(β̂p∗)} > 2(p− p∗)

]
. (7.10)

Notice that, in this case, the random variable2{l(β̂p) − l(β̂p∗)} is the logarithm
of the likelihood ratio of two competing models which, under certain regularity
conditions, is known to converge in distribution toχ2

p−p∗, and thus it follows that
the probability in Equation (7.10) is not 0 asymptotically. Some have suggested
multiplying the penalty term in the AIC by some increasing function ofn, say
a(n), that makes the probability

Pr
[
2{l(β̂p)− l(β̂p∗)} > 2a(n)(p− p∗)

]
asymptotically equal to 0. There are many choices ofa(n) that would work in this
context. However, some of the choices made in the literature seem arbitrary.

Schwarz (1978) and Kashyap (1982) suggest using a Bayesian approach to the
problem of model selection which, in the IID case, results in a criterion that is
similar to AIC in that it is based on a penalized log-likelihood function evaluated
at the maximum likelihood estimate for the model in question. The penalty term
in the Bayesian Information Criteria (BIC) obtained by Schwarz (1978) is the AIC
penalty termp multiplied by the functiona(n) = 1

2
log(N).

The Bayesian approach to model selection is based on maximizing the posterior
probabilities of the alternative models, given the observations. To do this we must
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define a strictly positive prior probabilityπp = Pr[Model(p)] for each model
and a conditional priordµp(β) for the parameter given it is inΩp, the subspace
defined by Model(p). LetY = (Y1, . . . , Yn) be the response variable and define
the distribution givenβ following (7.6)

fY(y|X, β) ≡
n∏

i=1

f(yi;xi, β)

The posterior probability that we look to maximize is

Pr [Model(p)|Y = y] =

∫
Ωp

πpfY(y|X, β)dµp(β)∑P
q=1

∫
Ωq

πqfY(y|X, β)dµq(β)

Notice that the denominator depends neither on the model nor the data, so we
need only to maximize the numerator when choosing models.

Schwarz (1978) and Kashyap (1982) suggest criteria derived by taking a Taylor
expansion of the log posterior probabilities of the alternative models. Schwarz
(1978) presents the following approximation for the IID case

log

∫
Ωp

πpfY(y|X, β)dµp(β) ≈ l(β̂p)−
1

2
p log n

with β̂p the maximum likelihood estimate obtained under Model(p).

This fact leads to the Bayesian Information Criteria (BIC) which is

BIC(p) = −2l(β̂p) + p log n (7.11)
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Kyphosis Example

The AIC and BIC obtained for the gam are:

AIC(Age) = 83 BIC(Age) = 90
AIC(Age,Start) = 64 BIC(Age,Start) = 78
AIC(Age,Number) = 73 BIC(Age,Number) = 86
AIC(Age,Start,Number) = 60 BIC(Age,Start,Number) = 81
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