
Chapter 8

The Bootstrap

Statistical science is the science of learning from experience. Efron and Tibshirani
(1993) say “Most people are not natural-born statisticians. Left to our own devices
we are not very good at picking out patterns from a sea of noisy data. To put it
another way, we are all too good at picking out non existing patterns that happen
to suit our purposes.”

Suppose we find ourselves in the following common data-analytic situation: a
random samplex = (x1, . . . , xn) from an unknown probability distributionF has
been observed and we wish to estimate a parameter of interestθ = t(F ) on the
basis ofx. For this purpose, we calculate an estimateθ̂ = s(x) from x.

A common estimate is theplug-in estimatet(F̂ ) whereF̂ is the empirical distri-

156



157

bution defined by

F (x) =
number of values inx equal tox

n

Can you think of a plug-in estimate that is commonly used?

The bootstrap was introduced by Efron (1979) as a computer based method to
estimate the standard deviation ofθ̂.

What are the advantages:

• It is completely automatic

• Requires no theoretical calculations

• Not based on asymptotic results

• Available no matter how complicated the estimatorθ̂ is.

A bootstrap sample is defined to be a random sample of sizen drawn fromF̂ , say
x∗ = (x∗

1, . . . , x
∗
n).

For each bootstrap samplex∗ there is a bootstrap replicate ofθ̂,

θ̂∗ = s(x∗).

The bootstrap estimate ofseF (θ̂) is defined by

seF̂ (θ̂∗). (8.1)
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This is called theideal bootstrap estimateof the standard error ofs(x).

Notice that for the case whereθ is the expected value or mean ofx1 we have

seF̂ (x̄∗) = seF̂ (x∗
1)/
√

n =

√√√√n−1

n∑
i=1

(xi − x̂)2/
√

n

and the ideal bootstrap estimate is the estimate we are used to. However, for any
other estimator other than the mean obtaining (8.1) there is no neat formula that
enables us to compute a numerical value in practice.

The bootstrap algorithm is a computational way of obtaining a good approxima-
tion to the numerical value of (8.1).

8.1 The bootstrap algorithm

The bootstrap algorithm works by drawing many independent bootstrap samples,
evaluating the corresponding bootstrap replications, and estimating the standard
error ofθ̂ by the empirical standard error, denoted byŝeB, whereB is the number
of bootstrap samples used.

1. SelectB independent bootstrap samplesx∗
1, . . . ,x

∗
B, each consisting ofn

data values drawing with replacement fromx.

2. Evaluate the bootstrap replication corresponding to each bootstrap sample

θ̂∗(b) = s(x∗
b), b = 1, . . . , B
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3. Estimate the standard errorseF (θ̂) by the sample standard error of theB
replicates

ŝeB =

[
1

B − 1

B∑
b=1

{θ̂∗(b)− θ̂∗(·)}2

]
with

θ̂∗(·) = B−1

B∑
b=1

θ̂∗(b)

The limit of ŝeB asB goes to infinity is the ideal bootstrap estimate of (8.1). But
how close is (8.1) toseF (θ̂)? See Efron and Tibshirani (1993) for more details.

8.2 Example: Curve fitting

In this example we will be estimating regression functions in two ways, by a
standard least-squares line and by loess.

A total of 164 mean took part in an experiment to see if the drug cholostyramine
lowered blood cholesterol levels. The men were supposed to take six packets of
cholostyramine per day, but many of them actually took much less. Figure 8.1
shows compliance plotted against percentage of the intended dose actually taken.
We also show a fitted line and a loess fit (using span=2/3). Notice the curves
similar from 0 to 60, a little different from 60 to 80 and quite different from 80 to
100.
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Figure 8.1: Estimated regression curves of Improvement on Compliance.
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Assume the points a regression model

yi = f(xi) + εi, i = 1, . . . , n

with theεi IID.

Say we are interested in the difference in rate of change off(x) in the 60–80 and
80–100 sections. We could define as the parameter to describe this. How can we
do this?

Notice that finding a standard error for this estimate is not straight-forward. We
can use the bootstrap.

Table 8.1: Estimates and bootstrap standard errors off(60), f(80), andf(100).
f̂line(60) f̂line(80) f̂line(100) f̂loess(60) f̂loess(80) f̂loess(100)

value: 33 44 56 28 35 66
ŝe50: 2 2 3 5 4 4

As seen in Figure 8.2. Even when there is no parameter of interest, the bootstrap
estimates off give us an idea of what a confidence set is for the nonparametric
estimates. We will see more of this in Chapter 7 and 8.

8.3 Confidence “intervals” for linear smoothers

It is easy to show that the variance-covariance matrix of the vector of fitted values
f̂ = Sy is

cov(f̂) = SS′σ2
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Figure 8.2: 50 bootstrap curves for each estimation technique.
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and given an estimate ofσ2 this can be used to give point-wise standard errors,
mainly by looking at diag(SS′)σ2.

Can we construct confidence intervals? What do we need?

First of all we need to know the distribution (at least approximately) off̂ . If the
errors are normal we know thatf is normally distributed. Why?

In the normal case, what are the confidence intervals for?

Remember that our estimates are usually biased, E(f̂) = Sf 6= f . If our null
hypothesis isSf = f (in the case of splines this is equivalent to assumingf ∈ G)
then our confidence intervals are forf otherwise it is much more convenient to
compute them forSf . We will start using the notatioñf = Sf . We can think of̃f
as the best possible approximation to “the truth”f when using theS as a smoother.

To see how point-wise estimates can be useful, notice that we can get an idea of
how variablêf(x0) is. However, it isn’t very helpful when we want to see how
variablef̂ is as a whole.

What if we want to know if a certain function, say a line, is in our “confidence
interval”? Point-wise intervals don’t really help us with this.
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8.4 Global confidence bands

Remember that̂f ∈ Rn. This means that talking about confidence intervals
doesn’t make much sense. We need to consider confidence sets.

For example if the errors are normal we know that

χ(f̃) = (f̂ − f̃)′(SS′σ2)−1(f̂ − f̃)

is χ2
n distributed. This permits us to construct confidence sets (which you can

think of as randomn-dimensional balls) for̃f of probabilityα

Cα = {g ∈ Rb; χ(g) ≤ χ1−α} = {g ∈ Rb; (f̂ − g)′(SS′σ2)−1(f̂ − g) ≤ χ1−α}.

Notice that the probability that the random ball doesn’t fall on the approximate
truth f̃ is α:

Pr(f̃ 6∈ Cα) = Pr
[
(f̂ − f̃)′(SS′σ2)−1(f̂ − f̃) > χ1−α

]
= α.

This is only the case if we knowσ2.

Usually we construct an estimate

σ̂2 = (y − f̂)′(y − f̂)/{n− tr(2S− SS′)}

and define confidence sets

C(f̃) = {g ∈ Rb; ν(g) ≤ G1−α}

based on
ν(f̃) = (f̂ − f̃)′(SS′σ̂2)−1(f̂ − f̃).
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HereG1−α is the(1− α)th quantile of the distribution ofν(f̃).

Do we knowG? Not necessarily.

In the case of linear regression, where the Gaussian model is correct andS is a
p-dimensional projection,ν(f̃) = ν(f) has distribution(n− p) + pFp,n−p.

When this is not the case we can argue that the distribution is approximately

{n− tr(2S− SS′)}+ tr(SS′)Ftr(SS′),n−tr(2S−SS′)

If we are not sure of the normality assumption or thatf̃ ≈ f we can use the
bootstrap to construct an approximate distributionĜ of G.

How do we do it?

8.5 Bootstrap estimate ofG1−α

A bootstrap sample is generated in the following way

• For some datay use some procedure (a linear smoother for example) to
obtain an estimatêf of some estimand (in this case the regression function
f ).

• Obtain residualŝε = y − f̂ .
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Figure 8.3: The regression curve and an outcome withn = 100 andσ2 = 1.

• Take a simple random sample of sizeB from the residualŝε1, . . . , ε̂n. No-
tice that this makes them IID just like theεs.

• Construct a “new” data set

y∗ = f̂ + ε̂∗

with ε̂∗ the vector of re-sampled residuals.

• From the new data form a new estimatef̂∗.

• Finally we obtain the value of

ν∗ = (f̂∗ − f̂)′(SS′σ̂∗2)−1(f̂∗ − f̂)
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• We repeat this procedure many times and form an approximate distribution
Ĝ with the values ofν∗. We may use the(1 − α)th quantile ofĜ as an
estimate ofG1−α.

Let’s consider the modelyi = f(xi) + εi, i = 1, . . . , n with εi IID normal. In
Figure 8.4 we see qqplots of the trueG, the bootstrapG and the F-distribution
approximation.

8.6 Displaying the confidence sets

Displaying ann− dimensional ball is not easy.

Global confidence bands usually show the projections of the confidence set onto
each of the component sub-spaces. Notice that a function (now I’m using function
andn-dimensional vector interchangeably) in this set would actually be in a con-
fidence cube as opposed to a ball! So a vector within the confidence bands isn’t
necessarily in the confidence ball. However its true that being in the ball implies
being within the band.

Another popular approach is selecting a few functions at random fromN(f̂ ,SS′σ̂2)
and checking to see if they are in the confidence set. If they are, we plot them.
This enables us to see what kind of “shape” functions in the confidence set have.
Maybe they all have a bump, maybe a large amount of them are close to being
constant lines, etc...
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Figure 8.4: QQ-plot of bootstrap vs. trueG and the F-distribution approximation.
We also see point-wise confidence intervals and curves in (blue) and out (green)
of the bootstrap confidence set.

8.7 Approximate F-test

Using the F-distribution approximations we may construct F-tests for testing var-
ious hypotheses.

The p-value given by the S-Plus functiongam() is usually testing for linearity
and using an F-distribution approximation.
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Suppose we wish to compare 2 smoothersf̂1 = S1y andf̂2 = S2y. For example,
f̂1 may be linear regression andf̂2 may be a “rougher” smoother.

Let RSS1 andRSS2 be the residual sum of squares obtained for each smoother.
Which one do you expect to be bigger?

andγ1 andγ2 be the degrees of freedom of each smoother, tr(2Sj−SjS
′
j), j = 1, 2.

An approximation that may be useful for this comparison is

(RSS1 −RSS2)/(γ2 − γ1)

RSS2/(n− γ2)
∼ Fγ2−γ1,n−γ2

There are moment corrections that can make this a better approximation (see
H&T).

8.8 Bootstrap and MLE

The bootstrap is sort of a computer implementation of nonparametric or paramet-
ric maximum likelihood. An advantage of the bootstrap is that it permits us to
compute maximum likelihood estimates of standard errors and other quantities
when no closed form solutions are available.

For example, consider a B-spline problem. If we chose the knots with some auto-
matic procedure and wanted to include the variation introduced by this data-driven
procedure, it would be very difficult to obtain closed form solutions for the stan-
dard errors of our estimates. Using the bootstrap we can get these.
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Figure 8.5: Same as previos figure but with t-distributed errors
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