
Chapter 9

Model Selection

Suppose we observe a realization of a random variable Y , with distribution defined
by a parameter β

∏

xi∈N0

f(yi;xi,β) ≡ fY(y;X,β) (9.1)

where y is the observed response associated with the covariates X and β ∈ R
P is

a P × 1 parameter vector.

We are interested in estimating β. Suppose that before doing so, we need to
choose from amongst P competing models, generated by simply restricting the
general parameter space RP in which β lies.

In terms of the parameters, we represent the full model with P parameters as:

Model(P): fY(y;x,βP ),βP = (β1, . . . , βp, βp+1, . . . , βP )′.

We denote the “true value” of the parameter vector β with β∗.

Akaike (1977) formulates the problem of statistical model identification as one of
selecting a model fY(y;x,βp) based on the observations from that distribution,
where the particular restricted model is defined by the constraint βp+1 = βp+2 =
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126 CHAPTER 9. MODEL SELECTION

. . . = βP = 0, so that

Model(p): fY(y;x,βp),βp = (β1, . . . , βp, 0, . . . , 0)
′ (9.2)

We will refer to p as the number of parameters and to Ωp as the sub-space of R
P

defined by restriction (9.2). For each p = 1, . . . , P , we may assume model(p) to
estimate the non-zero components of the vector β∗. We are interested in a criterion
that helps us chose amongst these P competing estimates.

In this Chapter we consider 3 methods for model selection.

9.1 Mallow’s Cp

Mallow’s Cp is a technique for model selection in regression (Mallows 1973).
The Cp statistic is defined as a criteria to assess fits when models with different
numbers of parameters are being compared. It is given by

Cp =
RSS(p)

σ2
−N + 2p (9.3)

If model(p) is correct then Cp will tend to be close to or smaller than p. Therefore
a simple plot of Cp versus p can be used to decide amongst models.

In the case of ordinary linear regression, Mallow’s method is based on estimating
the mean squared error (MSE) of the estimator β̂p = (X′

pXp)
−1X′

pY,

E[β̂p − β]2

via a quantity based on the residual sum of squares (RSS)

RSS(p) =
N

∑

n=1

(yn − xnβ̂p)
2

= (Y −Xpβ̂p)
′(Y −Xpβ̂p)

= Y′(IN −Xp(X
′

pXp)
−1X′

p)Y
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Here IN is an N × N identity matrix. By using a result for quadratic forms,
presented for example as Theorem 1.17 in Seber’s book, page 13, namely

E[Y′AY] = E[Y′]AE[Y] + tr[ΣA]

Σ being the variance matrix of Y, we find that

E[RSS(p)] = E[Y′(IN −Xp(X
′

pXp)
−1X′

p)Y]

= E[β̂p − β]2 + tr
[

IN −Xp(X
′

pXp)
−1X′

p

]

σ2

= E[β̂p − β]2 + σ2
(

N − tr
[

(X′

pXp)(X
′

pXp)
−1

])

= E[β̂p − β]2 + σ2(N − p)

where N is the number of observations and p is the number of parameters. Notice
that when the true model has p parameters E[Cp] = p. This shows why, if model(p)
is correct, Cp will tend to be close to p.

One problem with the Cp criterion is that we have to find an appropriate estimate
of σ2 to use for all values of p.

9.1.1 Cp for smoothers

A more direct way of constructing an estimate of PSE is to correct the ASR. It is
easy to show that

E{ASR(λ)} =
{

1− n−1tr(2Sλ − SλS
′

λ)
}

σ2 + n−1v′

λvλ

notice that
PSE(λ)− E{ASR(λ)} = n−12tr(Sλ)σ

2

This means that if we knew σ2 we could find a “corrected” ASR

ASR(λ) + 2tr(Sλ)σ
2

with the right expected value.



128 CHAPTER 9. MODEL SELECTION

For linear regression tr(Sλ) is the number of parameters so we could think of
2tr(Sλ)σ

2 as a penalty for large number of parameters or for un-smooth estimates.

How do we obtain an estimate for σ2? If we had a λ∗ for which the bias is 0, then
the usual unbiased estimate is

∑n

i=1
{yi − fλ∗(xi)}

2

n− tr(2Sλ∗ − Sλ∗S
′

λ∗)

The usual trick is to chose one a λ∗ that does little smoothing and consider the
above estimate. Another estimate that has been proposed it the first order differ-
ence estimate

1

2(n− 1)

n−1
∑

i=1

(yi+1 − yi)
2

Once we have an estimate σ̂2 then we can define

Cp = ASR(λ) + n−12tr(Sλ)σ̂
2

Notice that the p usually means number of parameters so it should be Cλ.

Notice this motivates a definition for degrees of freedoms.

9.2 Information Criteria

In this section we review the concepts behind Akaike’s Information Criterion
(AIC).

Akaike’s original work is for IID data, however it is extended to a regression
type setting in a straight forward way. Suppose that the conditional distribution
of Y given x is know except for a P -dimensional parameter β. In this case, the
probability density function of Y = (Y1, . . . , Yn) can be written as

fY(y;X,β) ≡
n

∏

i=1

f(yi;xi,β) (9.4)
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with X the design matrix with rows xi.

Assume that there exists a true parameter vector β∗ defining a true probability
density denoted by fY(y;X,β∗). Given these assumptions, we wish to select β,
from one of the models defined as in (9.2), “nearest” to the true parameter β∗

based on the observed data y. The principle behind Akaike’s criterion is to define
“nearest” as the model that minimizes the Kullback-Leibler Information Quantity

∆(β∗;X,β) =

∫

{log fY(y;X,β∗)− log fY(y;X,β)} fY(y;X,β∗) dy.

(9.5)

The analytical properties of the Kullback-Leibler Information Quantity are dis-
cussed in detail by Kullback (1959) . Two important properties for Akaike’s cri-
terion are

1. ∆(β∗;X,β) > 0 if fY(y;X,β∗) 6= fY(y;X,β)

2. ∆(β∗;X,β) = 0 if and only if fY(y;X,β∗) = fY(y;X,β)

almost everywhere on the range of Y. The properties mentioned suggest that
finding the model that minimizes the Kullback-Leibler Information Quantity is an
appropriate way to choose the “nearest” model.

Since the first term on the right hand side of (9.5) is constant over all models we
consider, we may instead maximize

H(β) =

∫

log fY(y;X,β)fY(y;X,β∗) dy

=
n

∑

i=1

∫

log f(yi;X,β) f(yi;xi,β
∗) dyi. (9.6)

Let β̂p be the maximum likelihood estimate under Model(p). Akaike’s procedure
for model selection is based on choosing the model which produces the estimate

that maximizes Eβ
∗

[

H(β̂p)
]

amongst all competing models. Akaike then derives
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a criterion by constructing an asymptotically unbiased estimate of Eβ
∗

[

H(β̂p)
]

based on the observed data.

Notice that H(β̂p) is a function, defined by (9.6), of the maximum likelihood
estimate β̂p, which is a random variable obtained from the observed data. A
natural estimator of its expected value (under the true distribution of the data) is
obtained by substituting the empirical distribution of the data into (9.6) resulting
in the log likelihood equation evaluated at the maximum likelihood estimate under
model(p)

l(β̂p) =
n

∑

i=1

log f(yi;xi, β̂p).

Akaike noticed that in general l(β̂p) will overestimate Eβ
∗

[

H(β̂)
]

. In particular

Akaike found that under some regularity conditions

Eβ
∗

[

l(β̂p)−H(β̂p)
]

≈ p.

This suggests that larger values of p will result in smaller values of l(β̂p), which
may be incorrectly interpreted as a “better” fit, regardless of the true model. We
need to “penalize” for larger values of p in order to obtain an unbiased estimate of
the “closeness” of the model. This fact leads to the Akaike Information Criteria
which is a bias-corrected estimate given by

AIC(p) = −2l(β̂p) + 2p. (9.7)

See, for example, Akaike (1973) and Bozdogan (1987) for the details.

9.3 Posterior Probability Criteria

Objections have been raised that minimizing Akaike’s criterion does not produce
asymptotically consistent estimates of the correct model Notice that if we consider
Model(p∗) as the correct model then we have for any p > p∗

Pr [AIC(p) < AIC(p∗)] = Pr
[

2{l(β̂p)− l(β̂p∗)} > 2(p− p∗)
]

. (9.8)
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Notice that, in this case, the random variable 2{l(β̂p) − l(β̂p∗)} is the logarithm
of the likelihood ratio of two competing models which, under certain regularity
conditions, is known to converge in distribution to χ2

p−p∗ , and thus it follows that
the probability in Equation (9.8) is not 0 asymptotically. Some have suggested
multiplying the penalty term in the AIC by some increasing function of n, say
a(n), that makes the probability

Pr
[

2{l(β̂p)− l(β̂p∗)} > 2a(n)(p− p∗)
]

asymptotically equal to 0. There are many choices of a(n) that would work in this
context. However, some of the choices made in the literature seem arbitrary.

Schwarz (1978) and Kashyap (1982) suggest using a Bayesian approach to the
problem of model selection which, in the IID case, results in a criterion that is
similar to AIC in that it is based on a penalized log-likelihood function evaluated
at the maximum likelihood estimate for the model in question. The penalty term
in the Bayesian Information Criteria (BIC) obtained by Schwarz (1978) is the AIC
penalty term p multiplied by the function a(n) = 1

2
log(N).

The Bayesian approach to model selection is based on maximizing the posterior
probabilities of the alternative models, given the observations. To do this we must
define a strictly positive prior probability πp = Pr[Model(p)] for each model
and a conditional prior dµp(β) for the parameter given it is in Ωp, the subspace
defined by Model(p). Let Y = (Y1, . . . , Yn) be the response variable and define
the distribution given β following (9.4)

fY(y|X,β) ≡
n

∏

i=1

f(yi;xi,β)

The posterior probability that we look to maximize is

Pr [Model(p)|Y = y] =

∫

Ωp
πpfY(y|X,β)dµp(β)

∑P

q=1

∫

Ωq
πqfY(y|X,β)dµq(β)

Notice that the denominator depends neither on the model nor the data, so we
need only to maximize the numerator when choosing models.

Schwarz (1978) and Kashyap (1982) suggest criteria derived by taking a Taylor
expansion of the log posterior probabilities of the alternative models. Schwarz
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(1978) presents the following approximation for the IID case

log

∫

Ωp

πpfY(y|X,β)dµp(β) ≈ l(β̂p)−
1

2
p log n

with β̂p the maximum likelihood estimate obtained under Model(p).

This fact leads to the Bayesian Information Criteria (BIC) which is

BIC(p) = −2l(β̂p) + p log n (9.9)

9.3.1 Kyphosis Example

The AIC and BIC obtained for the gam are:

AIC(Age) = 83 BIC(Age) = 90
AIC(Age,Start) = 64 BIC(Age,Start) = 78
AIC(Age,Number) = 73 BIC(Age,Number) = 86
AIC(Age,Start,Number) = 60 BIC(Age,Start,Number) = 81
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